x^4-2x^2-3/x^4+2x^2+1

Simple and best practice solution for x^4-2x^2-3/x^4+2x^2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^4-2x^2-3/x^4+2x^2+1 equation:


D( x )

x^4 = 0

x^4 = 0

x^4 = 0

1*x^4 = 0 // : 1

x^4 = 0

x = 0

x in (-oo:0) U (0:+oo)

x^4-(2*x^2)+2*x^2-(3/(x^4))+1 = 0

x^4-2*x^2+2*x^2-3*x^-4+1 = 0

x^4-3*x^-4+1 = 0

t_1 = x^4

1*t_1^1-3*t_1^-1+1 = 0

1*t_1^1-3*t_1^-1+1*t_1^0 = 0

(1*t_1^2+1*t_1^1-3*t_1^0)/(t_1^1) = 0 // * t_1^2

t_1^1*(1*t_1^2+1*t_1^1-3*t_1^0) = 0

t_1^1

t_1^2+t_1-3 = 0

t_1^2+t_1-3 = 0

DELTA = 1^2-(-3*1*4)

DELTA = 13

DELTA > 0

t_1 = (13^(1/2)-1)/(1*2) or t_1 = (-13^(1/2)-1)/(1*2)

t_1 = (13^(1/2)-1)/2 or t_1 = (-(13^(1/2)+1))/2

t_1 in { (-(13^(1/2)+1))/2, (13^(1/2)-1)/2}

t_1 = (-(13^(1/2)+1))/2

x^4-((-(13^(1/2)+1))/2) = 0

x^4+(1/2)*(13^(1/2)+1) = 0

1*x^4 = -(1/2*(13^(1/2)+1)) // : 1

x^4 = -1/2*(13^(1/2)+1)

t_1 = (13^(1/2)-1)/2

x^4-((13^(1/2)-1)/2) = 0

1*x^4 = (13^(1/2)-1)/2 // : 1

x^4 = (13^(1/2)-1)/2

x^4 = (13^(1/2)-1)/2 // ^ 1/4

abs(x) = ((13^(1/2)-1)^(1/4))/(2^(1/4))

x = ((13^(1/2)-1)^(1/4))/(2^(1/4)) or x = -(((13^(1/2)-1)^(1/4))/(2^(1/4)))

x in { ((13^(1/2)-1)^(1/4))/(2^(1/4)), -(((13^(1/2)-1)^(1/4))/(2^(1/4))) }

See similar equations:

| -7.58+y=-2.91 | | 12z-20z+2=14 | | X+3.2=1.4 | | 2k-k=4 | | 91=256+m | | 0.85x+.05(8-x)=.10(132) | | f(x)=3x^2-6x | | -x^2+2x+1.5=0 | | -17=-8+y | | 4(-1)-3d=3 | | 50-(2x+3)=2(x+6)+x | | .17=.250-2x | | 10k+6=-4 | | 12=-r-7 | | 3/5+6x=7.6 | | 4/3+1/6x=-5/6 | | 0.08=x+0.07 | | X/-10=13 | | 2=g/2+5 | | -4.095+x=18.665 | | 4a-17a+1=-12 | | x-81.6=-81.6 | | 2/(3w)-3(2w^2) | | -3(n+7)=-3(n-4)-9 | | 2x-0.2=11 | | -3=1-q | | 10-2(3y+1)=2 | | -4=32/p | | 5.4=x+(-6.1) | | 4=y+8/3 | | 10-2(3y+1)=12 | | 2x=2xx |

Equations solver categories